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Límites en el infinito y límites infinitos de funciones.  
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Calcula 
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Límite en el infinito 
 
Cuando  se calcula el límite de una función en el infinito se trata de determinar la tendencia que tendrá la 
función (los valores que toma) cuando la variable x se hace muy muy grande y positiva (x �+∞) o muy muy 
pequeña y negativa (x �– ∞) 
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entonces la gráfica de f se aproxima a la recta horizontal y = k cuando x�±∞. Dicha recta se denomina 
asíntota horizontal de f.  
 
Como norma general para el cálculo de un límite en el infinito se sustituye la variable x por ∞ y se calcula el 
límite.  
 
Se verifican las siguientes “relaciones” entre 0, ∞ y un número real k: 
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El valor del límite es el resultado de tal sustitución salvo que aparezcan INDETERMINACIONES: 
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1.- Los límites fundamentales son: 
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2.- Si f(x) es un POLINOMIO de grado n: 01
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 y no tiene asíntotas horizontales. Se dice que la función presenta una rama parabólica. 
Esto se aplica entre otras funciones a las rectas, parábolas y cúbicas. 

3.- Si f es una función de tipo HIPÉRBOLA 
bax

k
xf

+
=)(  entonces: 

0)(lim =
∞±→

xf
x

 

y tiene asíntota horizontal en la recta y = 0 (el eje OX).  
 

4.- Si f es una función de tipo RACIONAL 
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Siendo an el coeficiente de mayor grado de Pn y bm el coeficiente de mayor grado de Qm 
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La función tiene asíntota horizontal en la recta y = 0 en el primer caso y a la recta 

m
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en el tercer caso. En el segundo caso pueden suceder dos situaciones que veremos después. 
 
 

5.- Si f(x) es una función RADICAL con radicando un polinomio de cualquier grado 
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6.- Si ))(ln()( xgxf =  entonces se cumple 
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Y basta tener en cuenta que 
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7.- Si 
)()( xgexf =  entonces se cumple 
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8.- Generalizando el caso anterior se tiene que si 
)()( xgkxf =  entonces se cumple 

)(
)(

lim

lim)(lim

xg
xg

xx

xkkxf ∞±→==
∞±→∞±→

 

Y basta tener en cuenta que 
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Pueden darse dos circunstancias: 
(a) La curva adopta una rama parabólica en ±∞. 
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(b) La curva crece (o decrece) pero se ajusta a una recta oblicua. 
En este caso se han de calcular los límites: 
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Si m y h son números finitos entonces la curva se ajusta a la recta de ecuación y = mx +h, que se llamará una 
asíntota oblicua de f. 

 
Estudio de algunos casos importantes 

 

e 
 
El número e. se obtiene como límite de toda expresión siguiente: 
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Siempre que ∞=

→
)(lim xf

ax

 

 

∞-∞ 
 
Este límite suele proceder: 

(a) De la suma (o resta) de dos fracciones algebraicas.  
La operación habitual es operar las fracciones hasta obtener una función racional y aplicar los límites 
del punto 4. 

(b) De la resta de dos radicales. 
La operación habitual es multiplicar y dividir por el conjugado de la expresión radical. Si el límite se 

convierte en una indeterminación del tipo 

∞
∞  se ha de dividir por el término de mayor grado de x.  

 
 

1∞ 
 
Estos límites proceden de una expresión exponencial y su valor está relacionado con el número e. El límite 
no ha de ser necesariamente en el infinito. 
 
Supongamos que: 
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El límite se calcula con la siguiente regla: 
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Ejercicios de gráficas de funciones 
 
Dadas las siguientes gráficas de funciones se pide: 

(a) Dominio 
(b) Cortes con OX  
(c) Cortes con OY  
(d) Intervalos de crecimiento y decrecimiento  
(e) Puntos de discontinuidad (si los hubiera).  
(f) Máximos y mínimos si los hubiera. 
(g) Limites en los puntos de discontinuidad.   
(h) Limites en el infinito. 
(i) Asíntotas horizontales, verticales y oblicuas (si las hubiera) 
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